A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake

نویسندگان

  • E. E. Brodsky
  • C. D. Rowe
  • F. Meneghini
  • J. C. Moore
چکیده

[1] The absolute value of stress on a fault during slip is a critical unknown quantity in earthquake physics. One of the reasons for the uncertainty is a lack of geological constraints in real faults. Here we calculate the slip rate and stress on an ancient fault in a new way based on rocks preserved in an unusual exposure. The study area consists of a fault core on Kodiak Island that has a series of asymmetrical intrusions of ultrafinegrained fault rock into the surrounding cataclasite. The intrusive structures have ductile textures and emanate upward from a low-density layer. We interpret the intrusions as products of a gravitational (Rayleigh-Taylor) instability where the spacing between intrusions reflects the preferred wavelength of the flow. The spacing between intrusions is 1.4 ± 0.5 times the thickness of the layer. This low spacing-to-thickness ratio cannot be explained by a low Reynolds number flow but can be generated by one with moderate Reynolds numbers. Using a range of density contrasts and the geometry of the outcrop as constraints, we find that the distance between intrusions is best explained by moderately inertial flow with fluid velocities on the order of 10 cm/s. The angle that the intrusions are bent over implies that the horizontal slip velocity was comparable to the vertical rise velocity, and therefore, the fault was slipping at a speed of order 10 cm/s during emplacement. These slip velocities are typical of an earthquake or its immediate afterslip and thus require a coseismic origin. The Reynolds number of the buoyant flow requires a low viscous stress of at most 20 Pa during an earthquake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismicity of Batubesi Dam at Sorowako Region Based on Earthquake Data and Microtremor Measurement

Batubesi Dam which is located in Sorowako region in the middle part of Sulawesi island had been designed with seismic coefficient about 0.20g. The region constitutes an active earthquake zone with the recurrence frequency and magnitude of the earthquake are relatively high. The region is located on and active fault zone due to lateral fault movement (strike-slip) of Matano fault, Palukoro fault...

متن کامل

Seismicity in Idaho and Montana Triggered by the Denali Fault Earthquake: A Window into the Geologic Context for Seismic Triggering

We present a case study of dynamically triggered seismicity in Idaho and western Montana from the 2002 MW 7.9 Denali fault earthquake to investigate the relationship between measured geological discriminants and propensity for triggering. We first establish triggering. We find events that are not reported in the Advanced National Seismic System catalog in Idaho and Yellowstone following the Den...

متن کامل

Stochastic Finite Fault Modeling for the 16 September 1978 Tabas, Iran, Earthquake

The main objective of this study is estimating acceleration time history of 16 September 1978 Tabas earthquake incorporating the seismological/geological source-path and site model parameters by using finite-fault simulation approach. The method generalizes the stochastic ground-motion simulation technique, developed for point sources, to the case of finite faults. It subdivides the fault plane...

متن کامل

ارزیابی خطر پذیری مسیر انتخابی احداث راه آهن حدفاصل اصفهان و اهواز در مقابل زلزله

The earthquake is a natural disaster that damages structure and lifeline and is simply inserted into human artifacts. For this reason the structures and lifeline, earthquake loads shall estimate and in order to provide its design.in Iran earthquake, risk of natural disasters is dominant. It should be noted that Iran in recent years, an earthquake with a magnitude of 7.5 Richter scale or more fr...

متن کامل

A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years

[1] We simulate 1000 years of the earthquake cycle along the San Andreas Fault System by convolving best estimates of interseismic and coseismic slip with the Green’s function for a point dislocation in an elastic plate overlying a viscoelastic half-space. Interseismic slip rate is based on long-term geological estimates while fault locking depths are derived from horizontal GPS measurements. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009